ICLR 2022 | Graph Machine Learning 论文分享

ICLR,全称为「International Conference on Learning Representations」(国际学习表征会议),ICLR 是由位列深度学习三大巨头之二的 Yoshua Bengio 和 Yann LeCun 牵头创办,2013 年开始每年举办一次。众所周知,数据的应用表征对于机器学习的性能有着重要影响。表征学习的迅猛发展也伴随着不少问题,比如我们如何更好地从数据中学习更具含义及有效的表征。ICLR对这个领域展开了探索,包括了深度学习、表征学习、度量学习、核学习、组合模型、非常线性结构预测及非凸优化等问题。该会议已经得到学术研究者们的广泛认可,被认为是深度学习领域的顶级会议。

image
Source:Google

图学习的基准和基线

论文标题Graph-less Neural Networks: Teaching Old MLPs New Tricks Via Distillation
作者团队:Shichang Zhang, Yozen Liu, Yizhou Sun, Neil Shah

论文标题Evaluation Metrics for Graph Generative Models: Problems, Pitfalls, and Practical Solutions
作者团队: Leslie O’Bray, Max Horn, Bastian Rieck, Karsten Borgwardt

论文标题GNN is a Counter? Revisiting GNN for Question Answering
作者团队: Kuan Wang, Yuyu Zhang, Diyi Yang, Le Song, Tao Qin

论文标题Rethinking Network Design and Local Geometry in Point Cloud: A Simple Residual MLP Framework
作者团队:Xu Ma, Can Qin, Haoxuan You, Haoxi Ran, Yun Fu

GNN理论

论文标题A New Perspective on “How Graph Neural Networks Go Beyond Weisfeiler-Lehman?”
作者团队:Asiri Wijesinghe, Qing Wang

论文标题Frame Averaging for Invariant and Equivariant Network Design
作者团队:Omri Puny, Matan Atzmon, Edward J. Smith, Ishan Misra, Aditya Grover, Heli Ben-Hamu, Yaron Lipman

论文标题Equivariant Subgraph Aggregation Networks
作者团队:Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath Balamurugan, Michael M. Bronstein, Haggai Maron

论文标题Understanding over-squashing and bottlenecks on graphs via curvature
作者团队:Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, Michael M. Bronstein

论文标题Expressiveness and Approximation Properties of Graph Neural Networks
作者团队:Floris Geerts, Juan L Reutter

论文标题How Attentive are Graph Attention Networks?
作者团队:Shaked Brody, Uri Alon, Eran Yahav

论文标题From Stars to Subgraphs: Uplifting Any GNN with Local Structure Awareness
作者团队:Lingxiao Zhao, Wei Jin, Leman Akoglu, Neil Shah

论文标题Is Homophily a Necessity for Graph Neural Networks?
作者团队:Yao Ma, Xiaorui Liu, Neil Shah, Jiliang Tang

论文标题PF-GNN: Differentiable particle filtering based approximation of universal graph representations
作者团队:Mohammed Haroon Dupty, Yanfei Dong, Wee Sun Lee

论文标题Do We Need Anisotropic Graph Neural Networks?
作者团队:Shyam A. Tailor, Felix Opolka, Pietro Lio, Nicholas Donald Lane

论文标题LEARNING GUARANTEES FOR GRAPH CONVOLUTIONAL NETWORKS ON THE STOCHASTIC BLOCK MODEL
作者团队:Wei Lu

论文标题Triangle and Four Cycle Counting with Predictions in Graph Streams
作者团队:Justin Y Chen, Talya Eden, Piotr Indyk, Honghao Lin, Shyam Narayanan, Ronitt Rubinfeld, Sandeep Silwal, Tal Wagner, David Woodruff, Michael Zhang

论文标题Equivariant and Stable Positional Encoding for More Powerful Graph Neural Networks
作者团队: Haorui Wang, Haoteng Yin, Muhan Zhang, Pan Li

论文标题Why Propagate Alone? Parallel Use of Labels and Features on Graphs Yangkun Wang, Jiarui Jin, Weinan Zhang, Yang Yongyi, Jiuhai Chen, Quan Gan, Yong Yu, Zheng Zhang, Zengfeng Huang, David Wipf

论文标题You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks
作者团队:Eli Chien, Chao Pan, Jianhao Peng, Olgica Milenkovic

论文标题Revisiting Over-smoothing in BERT from the Perspective of Graph
作者团队:Han Shi, JIAHUI GAO, Hang Xu, Xiaodan Liang, Zhenguo Li, Lingpeng Kong, Stephen M. S. Lee, James Kwok

新的GNN架构

论文标题Neural Structured Prediction for Inductive Node Classification
作者团队:Meng Qu, Huiyu Cai, Jian Tang

论文标题Geometric and Physical Quantities improve E(3) Equivariant Message Passing
作者团队:Johannes Brandstetter, Rob Hesselink, Elise van der Pol, Erik J Bekkers, Max Welling

论文标题Topological Graph Neural Networks
作者团队: Max Horn, Edward De Brouwer, Michael Moor, Yves Moreau, Bastian Rieck, Karsten Borgwardt

论文标题GRAND++: Graph Neural Diffusion with A Source Term
作者团队:Matthew Thorpe, Tan Minh Nguyen, Hedi Xia, Thomas Strohmer, Andrea Bertozzi, Stanley Osher, Bao Wang

论文标题Graph Neural Networks with Learnable Structural and Positional Representations
作者团队:Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, Xavier Bresson

链接预测

论文标题Revisiting Virtual Nodes in Graph Neural Networks for Link Prediction
作者团队:EunJeong Hwang, Veronika Thost, Shib Sankar Dasgupta, Tengfei Ma

论文标题Counterfactual Graph Learning for Link Prediction
作者团队:Tong Zhao, Gang Liu, Daheng Wang, Wenhao Yu, Meng Jiang

论文标题Benchmarking Graph Neural Networks on Dynamic Link Prediction
作者团队:Joakim Skarding, Matthew Hellmich, Bogdan Gabrys, Katarzyna Musial-Gabrys

论文标题Few-shot graph link prediction with domain adaptation
作者团队:Hao Zhu, Mahashweta Das, Mangesh Bendre, Fei Wang, Hao Yang, Soha Hassoun

论文标题Neural Link Prediction with Walk Pooling
作者团队:Liming Pan, Cheng Shi, Ivan Dokmanić

更深的GNN

论文标题Towards Deepening Graph Neural Networks: A GNTK-based Optimization Perspective
作者团队:Wei Huang, Yayong Li, weitao Du, Richard Xu, Jie Yin, Ling Chen, Miao Zhang

图数据增强

论文标题Graph Condensation for Graph Neural Networks
作者团队:Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, Neil Shah

GNN的训练

论文标题PipeGCN: Efficient Full-Graph Training of Graph Convolutional Networks with Pipelined Feature Communication
作者团队: Cheng Wan, Youjie Li, Cameron R. Wolfe, Anastasios Kyrillidis, Nam Sung Kim, Yingyan Lin

论文标题IGLU: Efficient GCN Training via Lazy Updates
作者团队:S Deepak Narayanan, Aditya Sinha, Prateek Jain, Purushottam Kar, SUNDARARAJAN SELLAMANICKAM

论文标题Learning to Schedule Learning rate with Graph Neural Networks
作者团队:Yuanhao Xiong, Li-Cheng Lan, Xiangning Chen, Ruochen Wang, Cho-Jui Hsieh

论文标题Towards Training Billion Parameter Graph Neural Networks for Atomic Simulations
作者团队:Anuroop Sriram, Abhishek Das, Brandon M Wood, C. Lawrence Zitnick

论文标题EXACT: Scalable Graph Neural Networks Training via Extreme Activation Compression
作者团队:Zirui Liu, Kaixiong Zhou, Fan Yang, Li Li, Rui Chen, Xia Hu

论文标题Learn Locally, Correct Globally: A Distributed Algorithm for Training Graph Neural Networks
作者团队:Morteza Ramezani, Weilin Cong, Mehrdad Mahdavi, Mahmut Kandemir, Anand Sivasubramaniam

论文标题Large-Scale Representation Learning on Graphs via Bootstrapping
作者团队:Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Mehdi Azabou, Eva L Dyer, Remi Munos, Petar Veličković, Michal Valko

图的自监督学习

论文标题Self-Supervised Graph Neural Networks for Improved Electroencephalographic Seizure Analysis
作者团队:Siyi Tang, Jared Dunnmon, Khaled Kamal Saab, Xuan Zhang, Qianying Huang, Florian Dubost, Daniel Rubin, Christopher Lee-Messer

论文标题Pre-training Molecular Graph Representation with 3D Geometry
作者团队:Shengchao Liu, Hanchen Wang, Weiyang Liu, Joan Lasenby, Hongyu Guo, Jian Tang

论文标题Node Feature Extraction by Self-Supervised Multi-scale Neighborhood Prediction
作者团队: Eli Chien, Wei-Cheng Chang, Cho-Jui Hsieh, Hsiang-Fu Yu, Jiong Zhang, Olgica Milenkovic, Inderjit S Dhillon

论文标题Automated Self-Supervised Learning for Graphs
作者团队: Wei Jin, Xiaorui Liu, Xiangyu Zhao, Yao Ma, Neil Shah, Jiliang Tang

GNN的可解释性

论文标题Discovering Invariant Rationales for Graph Neural Networks
作者团队:Yingxin Wu, Xiang Wang, An Zhang, Xiangnan He, Tat-Seng Chua

论文标题Explanations of Black-Box Models based on Directional Feature Interactions
作者团队:Aria Masoomi, Davin Hill, Zhonghui Xu, Craig P Hersh, Edwin K. Silverman, Peter J. Castaldi, Stratis Ioannidis, Jennifer Dy

论文标题DEGREE: Decomposition Based Explanation for Graph Neural Networks
作者团队:Qizhang Feng, Ninghao Liu, Fan Yang, Ruixiang Tang, Mengnan Du, Xia Hu

论文标题A Biologically Interpretable Graph Convolutional Network to Link Genetic Risk Pathways and Imaging Phenotypes of Disease
作者团队: Sayan Ghosal, Qiang Chen, Giulio Pergola, Aaron L Goldman, William Ulrich, Daniel R Weinberger, Archana Venkataraman

论文标题Explainable GNN-Based Models over Knowledge Graphs
作者团队:David Jaime Tena Cucala, Bernardo Cuenca Grau, Egor V. Kostylev, Boris Motik

论文标题Efficient Neural Causal Discovery without Acyclicity Constraints
作者团队:Phillip Lippe, Taco Cohen, Efstratios Gavves

图分子生成

论文标题Amortized Tree Generation for Bottom-up Synthesis Planning and Synthesizable Molecular Design
作者团队:Wenhao Gao, Rocío Mercado, Connor W. Coley

论文标题Data-Efficient Graph Grammar Learning for Molecular Generation
作者团队:Minghao Guo, Veronika Thost, Beichen Li, Payel Das, Jie Chen, Wojciech Matusik

论文标题GeoDiff: A Geometric Diffusion Model for Molecular Conformation Generation
作者团队: Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, Jian Tang

论文标题Graph Auto-Encoder via Neighborhood Wasserstein Reconstruction
作者团队:Mingyue Tang, Pan Li, Carl Yang

论文标题GraphENS: Neighbor-Aware Ego Network Synthesis for Class-Imbalanced Node Classification
作者团队: Joonhyung Park, Jaeyun Song, Eunho Yang

论文标题Top-N: Equivariant Set and Graph Generation without Exchangeability
作者团队:Clement Vignac, Pascal Frossard

论文标题Differentiable Scaffolding Tree for Molecule Optimization
作者团队:Tianfan Fu, Wenhao Gao, Cao Xiao, Jacob Yasonik, Connor W. Coley, Jimeng Sun

论文标题Learning to Extend Molecular Scaffolds with Structural Motifs
作者团队:Krzysztof Maziarz, Henry Richard Jackson-Flux, Pashmina Cameron, Finton Sirockin, Nadine Schneider, Nikolaus Stiefl, Marwin Segler, Marc Brockschmidt

论文标题Vitruvion: A Generative Model of Parametric CAD Sketches
作者团队:Ari Seff, Wenda Zhou, Nick Richardson, Ryan P Adams

图上的组合优化

论文标题Graph Neural Network Guided Local Search for the Traveling Salesperson Problem
作者团队:Benjamin Hudson, Qingbiao Li, Matthew Malencia, Amanda Prorok

论文标题Neural Models for Output-Space Invariance in Combinatorial Problems
作者团队:Yatin Nandwani, Vidit Jain, Mausam ., Parag Singla

论文标题What’s Wrong with Deep Learning in Tree Search for Combinatorial Optimization
作者团队:Maximilian Böther, Otto Kißig, Martin Taraz, Sarel Cohen, Karen Seidel, Tobias Friedrich

论文标题Learning Scenario Representation for Solving Two-stage Stochastic Integer Programs
作者团队:Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang

图物理研究

论文标题Learning the Dynamics of Physical Systems from Sparse Observations with Finite Element Networks
作者团队: Marten Lienen, Stephan Günnemann

论文标题R5: Rule Discovery with Reinforced and Recurrent Relational Reasoning
作者团队:Shengyao Lu, Bang Liu, Keith G Mills, SHANGLING JUI, Di Niu

论文标题Ab-Initio Potential Energy Surfaces by Pairing GNNs with Neural Wave Functions
作者团队:Nicholas Gao, Stephan Günnemann

论文标题Message Passing Neural PDE Solvers
作者团队: Johannes Brandstetter, Daniel E. Worrall, Max Welling

论文标题Constrained Graph Mechanics Networks
作者团队: Wenbing Huang, Jiaqi Han, Yu Rong, Tingyang Xu, Fuchun Sun, Junzhou Huang

论文标题Towards Training Billion Parameter Graph Neural Networks for Atomic Simulations
作者团队: Anuroop Sriram, Abhishek Das, Brandon M Wood, C. Lawrence Zitnick

论文标题Neural Relational Inference with Node-Specific Information
作者团队:Ershad Banijamali

论文标题Predicting Physics in Mesh-reduced Space with Temporal Attention
作者团队:XU HAN, Han Gao, Tobias Pfaff, Jian-Xun Wang, Liping Liu

图上的生物和化学研究

论文标题Iterative Refinement Graph Neural Network for Antibody Sequence-Structure Co-design
作者团队:Wengong Jin, Jeremy Wohlwend, Regina Barzilay, Tommi S. Jaakkola

论文标题GeoDiff: A Geometric Diffusion Model for Molecular Conformation Generation
作者团队:Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, Jian Tang

论文标题Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking
作者团队:Octavian-Eugen Ganea, Xinyuan Huang, Charlotte Bunne, Yatao Bian, Regina Barzilay, Tommi S. Jaakkola, Andreas Krause

论文标题Spatial Graph Attention and Curiosity-driven Policy for Antiviral Drug Discovery
作者团队:Yulun Wu, Nicholas Choma, Andrew Deru Chen, Mikaela Cashman, Erica Teixeira Prates, Veronica G Melesse Vergara, Manesh B Shah, Austin Clyde, Thomas Brettin, Wibe Albert de Jong, Neeraj Kumar, Martha S Head, Rick L. Stevens, Peter Nugent, Daniel A Jacobson, James B Brown

论文标题Using Graph Representation Learning with Schema Encoders to Measure the Severity of Depressive Symptoms
作者团队:Simin Hong, Anthony Cohn, David Crossland Hogg

论文标题A Biologically Interpretable Graph Convolutional Network to Link Genetic Risk Pathways and Imaging Phenotypes of Disease
作者团队:Sayan Ghosal, Qiang Chen, Giulio Pergola, Aaron L Goldman, William Ulrich, Daniel R Weinberger, Archana Venkataraman

论文标题Simple GNN Regularisation for 3D Molecular Property Prediction and Beyond
作者团队:Jonathan Godwin, Michael Schaarschmidt, Alexander L Gaunt, Alvaro Sanchez-Gonzalez, Yulia Rubanova, Petar Veličković, James Kirkpatrick, Peter Battaglia

论文标题Geometric Transformers for Protein Interface Contact Prediction
作者团队: Alex Morehead, Chen Chen, Jianlin Cheng

论文标题OntoProtein: Protein Pretraining With Gene Ontology Embedding
作者团队: Ningyu Zhang, Zhen Bi, Xiaozhuan Liang, Siyuan Cheng, Haosen Hong, Shumin Deng, Qiang Zhang, Jiazhang Lian, Huajun Chen

Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations
作者团队:Keir Adams, Lagnajit Pattanaik, Connor W. Coley

论文标题Chemical-Reaction-Aware Molecule Representation Learning
作者团队:Hongwei Wang, Weijiang Li, Xiaomeng Jin, Kyunghyun Cho, Heng Ji, Jiawei Han, Martin Burke

论文标题Spherical Message Passing for 3D Molecular Graphs
作者团队:Yi Liu, Limei Wang, Meng Liu, Yuchao Lin, Xuan Zhang, Bora Oztekin, Shuiwang Ji

时间序列GNN

论文标题TAMP-S2GCNets: Coupling Time-Aware Multipersistence Knowledge Representation with Spatio-Supra Graph Convolutional Networks for Time-Series Forecasting
作者团队:Yuzhou Chen, Ignacio Segovia-Dominguez, Baris Coskunuzer, Yulia Gel

论文标题Space-Time Graph Neural Networks
作者团队:Samar Hadou, Charilaos I Kanatsoulis, Alejandro Ribeiro

论文标题Filling the G_ap_s: Multivariate Time Series Imputation by Graph Neural Networks
作者团队:Andrea Cini, Ivan Marisca, Cesare Alippi

论文标题Graph-Guided Network for Irregularly Sampled Multivariate Time Series
作者团队:Xiang Zhang, Marko Zeman, Theodoros Tsiligkaridis, Marinka Zitnik

论文标题Learning to Remember Patterns: Pattern Matching Memory Networks for Traffic Forecasting
作者团队:Hyunwook Lee,Seungmin Jin,Hyeshin Chu,Hongkyu Lim,Sungahn

图上的多智能研究

论文标题Context-Aware Sparse Deep Coordination Graphs
作者团队:Tonghan Wang, Liang Zeng, Weijun Dong, Qianlan Yang, Yang Yu, Chongjie Zhang

论文标题Reinforcement Learning under a Multi-agent Predictive State Representation Model: Method and Theory
作者团队:Zhi Zhang, Zhuoran Yang, Han Liu, Pratap Tokekar, Furong Huang

论文标题Learning Graphon Mean Field Games and Approximate Nash Equilibria
作者团队:Kai Cui, Heinz Koeppl

论文标题Graph-Enhanced Exploration for Goal-oriented Reinforcement Learning
作者团队:Jiarui Jin, Sijin Zhou, Weinan Zhang, Tong He, Yong Yu, Rasool Fakoor

论文标题Structure-Aware Transformer Policy for Inhomogeneous Multi-Task Reinforcement Learning
作者团队:Sunghoon Hong, Deunsol Yoon, Kee-Eung Kim

论文标题C-Planning: An Automatic Curriculum for Learning Goal-Reaching Tasks
作者团队:Tianjun Zhang, Benjamin Eysenbach, Ruslan Salakhutdinov, Sergey Levine, Joseph E. Gonzalez

论文标题Learning Object-Oriented Dynamics for Planning from Text
作者团队: Guiliang Liu, Ashutosh Adhikari, Amir-massoud Farahmand, Pascal Poupart

图外推

Towards Distribution Shift of Node-Level Prediction on Graphs: An Invariance Perspective
作者团队:Qitian Wu, Hengrui Zhang, Junchi Yan, David Wipf

图上的关系建模

论文标题Relational Multi-Task Learning: Modeling Relations between Data and Tasks
作者团队: Kaidi Cao, Jiaxuan You, Jure Leskovec

论文标题Inductive Relation Prediction Using Analogy Subgraph Embeddings
作者团队: Jiarui Jin, Yangkun Wang, Kounianhua Du, Weinan Zhang, Zheng Zhang, David Wipf, Yong Yu, Quan Gan

论文标题Ada-NETS: Face Clustering via Adaptive Neighbour Discovery in the Structure Space
作者团队:Yaohua Wang, Yaobin Zhang, Fangyi Zhang, Senzhang Wang, Ming Lin, YuQi Zhang, Xiuyu Sun

论文标题Graph-Relational Domain Adaptation
作者团队:Zihao Xu, Hao He, Guang-He Lee, Bernie Wang, Hao Wang

论文标题MoReL: Multi-omics Relational Learning Arman Hasanzadeh, Ehsan Hajiramezanali, Nick Duffield, Xiaoning Qian

论文标题Know Your Action Set: Learning Action Relations for Reinforcement Learning
作者团队:Ayush Jain, Norio Kosaka, Kyung-Min Kim, Joseph J Lim

Graph Transformer

论文标题Revisiting Over-smoothing in BERT from the Perspective of Graph
作者团队:Han Shi, JIAHUI GAO, Hang Xu, Xiaodan Liang, Zhenguo Li, Lingpeng Kong, Stephen M. S. Lee, James Kwok

GNN和NLP结合

论文标题GNN-LM: Language Modeling based on Global Contexts via GNN
作者团队:Yuxian Meng, Shi Zong, Xiaoya Li, Xiaofei Sun, Tianwei Zhang, Fei Wu, Jiwei Li

GNN偏微分方程

论文标题Message Passing Neural PDE Solvers
作者团队:Johannes Brandstetter, Daniel E. Worrall, Max Welling
论文标题Learning Time-dependent PDE Solver using Message Passing Graph Neural Networks
作者团队:Pourya Pilva, Ahmad Zareei

论文标题Learning to Solve PDE-constrained Inverse Problems with Graph Networks
作者团队:Qingqing Zhao, David B. Lindell, Gordon Wetzstein

GNN的鲁棒性

论文标题Understanding and Improving Graph Injection Attack by Promoting Unnoticeability
作者团队:Yongqiang Chen, Han Yang, Yonggang Zhang, MA KAILI, Tongliang Liu, Bo Han, James Cheng

论文标题Adversarial Robustness Through the Lens of Causality
作者团队:Yonggang Zhang, Mingming Gong, Tongliang Liu, Gang Niu, Xinmei Tian, Bo Han, Bernhard Schölkopf, Kun Zhang

图上的随机块模型

论文标题LEARNING GUARANTEES FOR GRAPH CONVOLUTIONAL NETWORKS ON THE STOCHASTIC BLOCK MODEL
作者团队:Wei Lu
论文标题DIGRAC: Digraph Clustering Based on Flow Imbalance
作者团队:Yixuan He, Gesine Reinert, Mihai Cucuringu

34. 图隐私计算和联邦学习

论文标题Node-Level Differentially Private Graph Neural Networks
作者团队:Ameya Daigavane, Gagan Madan, Aditya Sinha, Abhradeep Guha Thakurta, Gaurav Aggarwal, Prateek Jain

论文标题Federated Learning with Heterogeneous Architectures using Graph HyperNetworks
作者团队:Or Litany, Haggai Maron, David Acuna, Jan Kautz, Gal Chechik, Sanja Fidler

论文标题Federated Inference through Aligning Local Representations and Learning a Consensus Graph
作者团队:Tengfei Ma, Trong Nghia Hoang, Jie Chen

图神经网络架构搜索

论文标题AutoCoG: A Unified Data-Modal Co-Search Framework for Graph Neural Networks
作者团队:Duc N.M Hoang, Kaixiong Zhou, Tianlong Chen, Xia Hu, Zhangyang Wang

论文标题A Transferable General-Purpose Predictor for Neural Architecture Search
作者团队:Fred X. Han, Fabian Chudak, Keith G Mills, Mohammad Salameh, Parsa Riahi, Jialin Zhang, Wei Lu, SHANGLING JUI, Di Niu

其它

论文标题Information Gain Propagation: a New Way to Graph Active Learning with Soft Labels
作者团队:Wentao Zhang, Yexin Wang, Zhenbang You, Meng Cao, Ping Huang, Jiulong Shan, Zhi Yang, Bin CUI

论文标题End-to-End Learning of Probabilistic Hierarchies on Graphs
作者团队: Daniel Zügner, Bertrand Charpentier, Morgane Ayle, Sascha Geringer, Stephan Günnemann

论文标题Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods
作者团队:Wenqing Zheng, Edward W Huang, Nikhil Rao, Sumeet Katariya, Zhangyang Wang, Karthik Subbian

论文标题Retriever: Learning Content-Style Representation as a Token-Level Bipartite Graph
作者团队:Dacheng Yin, Xuanchi Ren, Chong Luo, Yuwang Wang, Zhiwei Xiong, Wenjun Zeng

论文标题GLASS: GNN with Labeling Tricks for Subgraph Representation Learning
作者团队:Xiyuan Wang, Muhan Zhang

论文标题NodePiece: Compositional and Parameter-Efficient Representations of Large Knowledge Graphs
作者团队:Mikhail Galkin, Etienne Denis, Jiapeng Wu, William L. Hamilton

论文标题Query Embedding on Hyper-Relational Knowledge Graphs
作者团队:Dimitrios Alivanistos, Max Berrendorf, Michael Cochez, Mikhail Galkin

Reference

1.ICLR 2022图学习领域都在研究什么?Open Review投稿文章一览 - 知乎
2. GitHub - naganandy/graph-based-deep-learning-literature: links to conference publications in graph-based deep learning